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The time of the total clearing of particles from a given volume around growing or evapora-
ting drops is calculated on the basis of the theory of motion of moderately large nonvolatile
aerosol particles in binary gas mixtures which are nonuniform in temperature and concen-~
tration,

If in a volume containing a binary gas mixture with suspended nonvolatile aerosol particles one places
growing or evaporating drops capable of changing into one of the components of the gas mixture through a
phase transformation, then under certain conditions one can clear the volume of aerosol particles. The par-
ticles can move onto the drops and be adsorbed on them.

Vapors of the drop material form one of the components of the binary gas mixture (the first, to be
specific). The number of vapor molecules per unit volume can be either comparable with the number of
molecules of the main gas or small in comparison with the latter.

The analysis is performed with the condition that the time of total clearing of a given volume around
a drop is considerably less than the time of a significant change in its size. The latter condition occurs
in an overwhelming number of the aerosol systems actually observed.

In order to determine the time required for the total clearing of nonvolatile aerosol particles from
a given volume around a drop, it is enough to calculate the total velocity of the moderately large nonvolatile
aerosol particles relative to the center of the drop. The total velocity of an aerosol particle can be repre-
sented in the form
u=u® 4o 4 uled:
. 1)
where u® is the velocity of diffusiophoresis, 0™ is the velocity of thermophoresis, and u®1) is the
velocity of the center of inertia of the binary mixture relative to the center of the drop.

The strictest theory of the thermophoresis of moderately large nonvolatile particles in one-compo-
nent gases was constructed in [1]. This theory is not suitable for a binary gas mixture, however. An
overall equation for the thermo- and diffusiophoresis of moderately large nonvolatile aerosol particles in
binary gas mixtures was obtained later in [2]:

A
2(Krsi Mo+ K!!‘SDI) T 00) (“e + % Cr )

a2 =y & i ; R, VT — Kst D, (Vcl)ei . )
T, (1+2c, 2V w (142002 ) 42 142C, —»
o (1420 ) [ {14200 )2 (1+20n,)

The following notation is introduced in Eq. 2): ng, py, and T are the viscosity, average density, and
average temperature of the gas mixture, respectively, #g is the specific thermal conductivity of the mix-
ture, w; is the specific thermal conductivity of the particle, A is the mean free path of the gas molecules,
R, is the radius of the particle, Kqg; and K8 are the coefficients of thermal slippage and thermodiffusional
slippage, respectively, C is the coefficient of the temperature jump, Cp, is the slippage coefficient, C,
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Is the relative concentration of the first component of the mixture, and Dy, is the mutual diffusion coefficient,
If the origin of the spherical coordinate system is taken at the center of the drop and it is assumed that the
distribution of the concentration Cy of the component which condenses (or evaporates) at the surface of the
particle has spherical symmetry just like the distribution of the temperature T, then these distributions

can be found by solving the steady-state equations of diffusion
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and heat conduction
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In (3) and in (4) the value r is the distance from the center of the drop to the point (r >R) where the concen-
tration C; or the temperature T is sought for. We assume that at a large distance from the drop (@s r —=)
the concentration of the first component is equal to Cy, and the temperature is T,,. At the surface of the
drop (at r =R) these values equal Cyy and T, respectively,

Let us write the solutions of the equations of diffusion (3) and heat conduction (4) with the boundary
conditions noted above:
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An additional migration relative to a stationary drop will be observed for nonvolatile aerosol par-
ticles if there is a diffusional flux to the drop (or from it) of the first component through the quiescent
second component of the binary gas mixture.

This migration is equal to the velocity of the center of gravity of the gas mixture [3]:
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where ng ls the number of molecules of the second component of the gas mixture per unit volume. ny=ngy *
ng. and my is the mass of a molecule of the first component.

Because of the spherical symmetry of the problem the radial component uy of the total velocity of a
particle relative to the evaporating or growing drop will be different from zero.

Let us substitute the concentration and temperature distributions (5) and (6) into (2) and (7) and con-
sider that it is necessary to retain only the radial component of the gradients. As a result we obtain
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Equation (8) can be represented in a more compact form:
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If the coefficient @ +¥,) is positive then the particle will be attracted toward the drop and it will be repelled
if it is negative. We assume that @y +¥,)>0. Then we can calculate the time required for the total clearing
of nonvolatile aerosol particles from a given spherical volume of radius Ry, > R encompassing the drop.
This time follows from the equation
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To sum up, an equation is obtained for the time of clearing a given volume (with the selected values of
Cio, Cyg, Tw, and Tp) of moderately large nonvolatile aerosol particles.
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